Dirac eigenvalues estimates in terms of symmetric tensors
نویسنده
چکیده
We review some recent results concerning lower eigenvalues estimates for the Dirac operator [6, 7]. We show that Friedrich’s inequality can be improved via certain well-chosen symmetric tensors and provide an application to Sasakian spin manifolds.
منابع مشابه
Eigenvalues Estimates for the Dirac Operator in Terms of Codazzi Tensors
We prove a lower bound for the first eigenvalue of the Dirac operator on a compact Riemannian spin manifold depending on the scalar curvature as well as a chosen Codazzi tensor. The inequality generalizes the classical estimate from [2].
متن کاملNon-variational Computation of the Eigenstates of Dirac Operators with Radially Symmetric Potentials Lyonell Boulton and Nabile Boussaid
We discuss a novel strategy for computing the eigenvalues and eigenfunctions of the relativistic Dirac operator with a radially symmetric potential. The virtues of this strategy lie on the fact that it avoids completely the phenomenon of spectral pollution and it always provides two-side estimates for the eigenvalues with explicit error bounds on both eigenvalues and eigenfunctions. We also dis...
متن کاملNecessary and Sufficient Conditions for Copositive Tensors
In this paper, it is proved that a symmetric tensor is (strictly) copositive if and only if each of its principal subtensors has no (non-positive) negative H++-eigenvalue. Necessary and sufficient conditions for (strict) copositivity of a symmetric tensor are also given in terms of Z++-eigenvalues of the principal sub-tensors of that tensor. This presents a method for testing (strict) copositiv...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملA formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces
Let G/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of G sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of G. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a ...
متن کامل